
Avoiding Transfers and Improving Care: Newborn Resuscitation in Community and Rural Hospitals

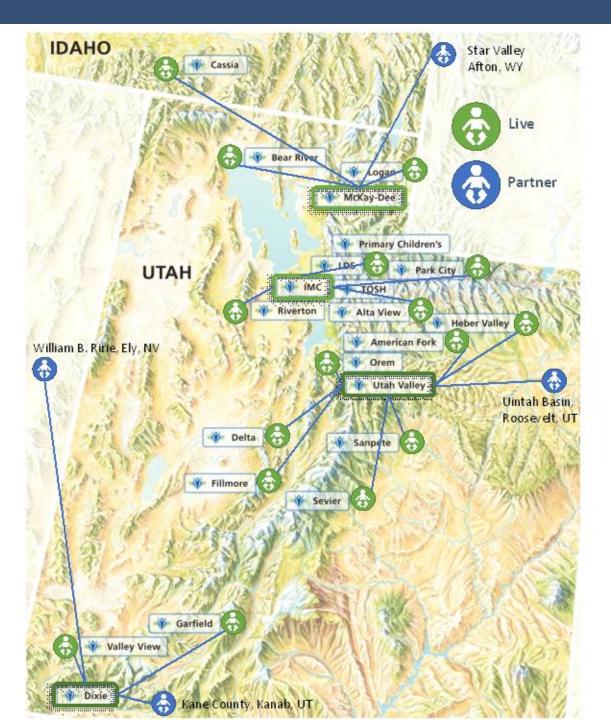
October 2, 2018

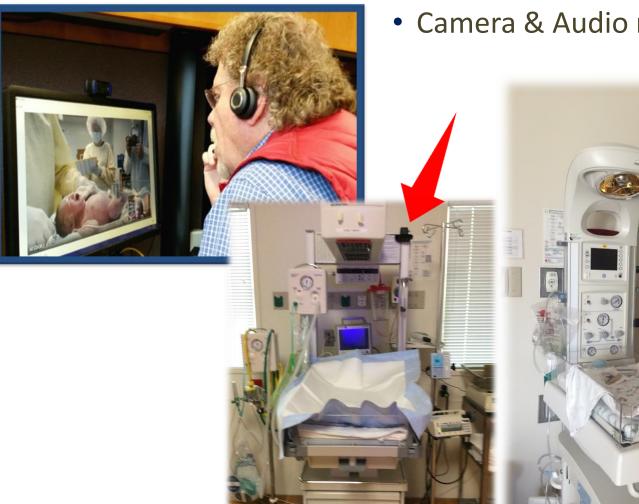
Quick Facts About Intermountain Healthcare

Healthcare

Why TeleHealth: Newborn Critical Care Program?

- 10% of newborns require transition assistance and some resuscitative measures.
- 1% of newborns require extensive resuscitative measures.
- 14,598 births in facilities without onsite neonatologist in 2017
- Newborn resuscitation program requires recertification every 2 years.

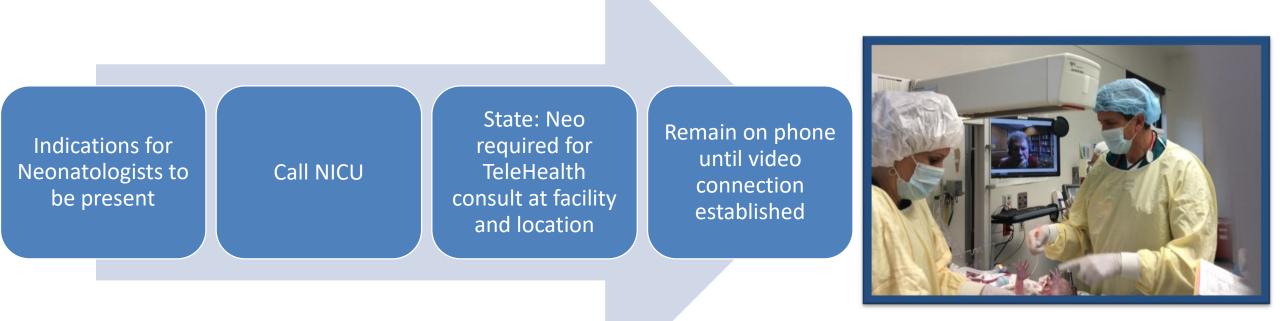




Women & Newborns

Newborn Critical Care

TeleHealth Equipment



2013 -- Prototype

2014 – Newborn in room equipment

2018 – Layton cabinet warmer

Originating Site Workflow

Intermountain[®] Healthcare

Distant Site Workflow

Neo notified of TeleHealth consult: Pre-notification, emergent, post delivery consult

Neo locates computer on unit and initiates TeleHealth call

Neo calls into newborn location

Quality Improvement: Case Study – LDRP Unit with 23 beds

- Rural hospital in an urban setting
- 1200-1400 births a year
- Level II A facility; keep newborns
 > 34 wks gestation
- RNs completed NRP yearly
- Respiratory Therapist on call and attends every delivery
- Newborn resuscitation-skilled MDs/LIPs are not on site

Intermountain[®] Healthcare

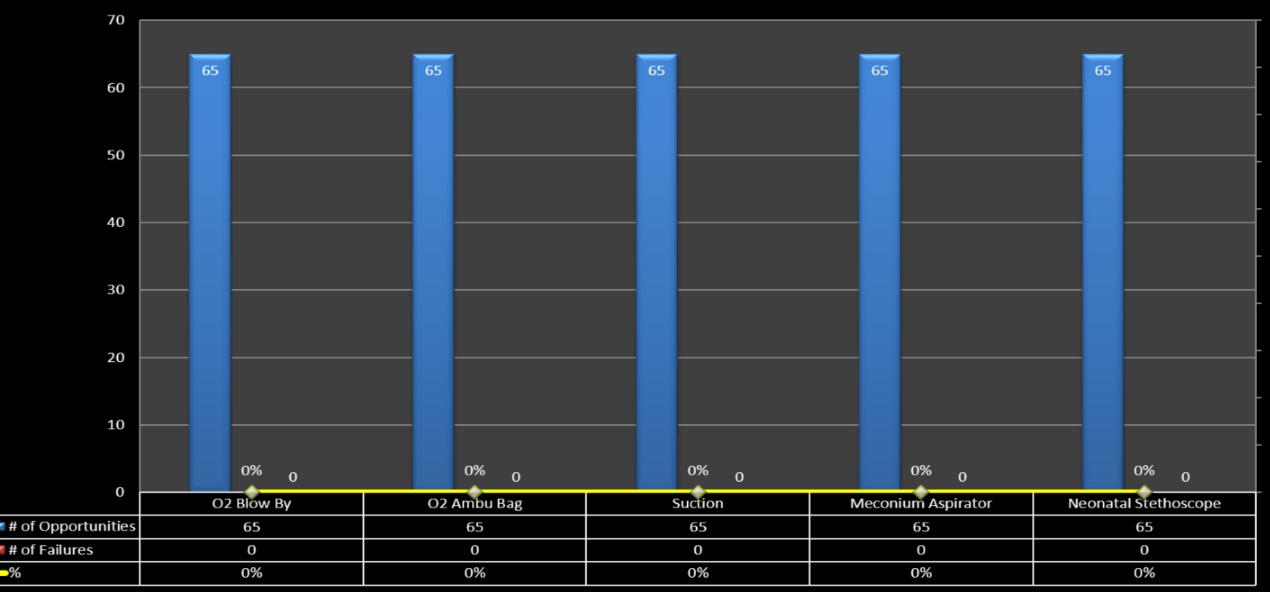
What happened in 2013?

- 30 resuscitation errors were identified
- 4 Cases serious errors and required a case review
- Errors included:
 - Equipment
 - RN Skills
 - NRP Sequencing
 - Resuscitation Form
 - Newborn TeleHealth program began

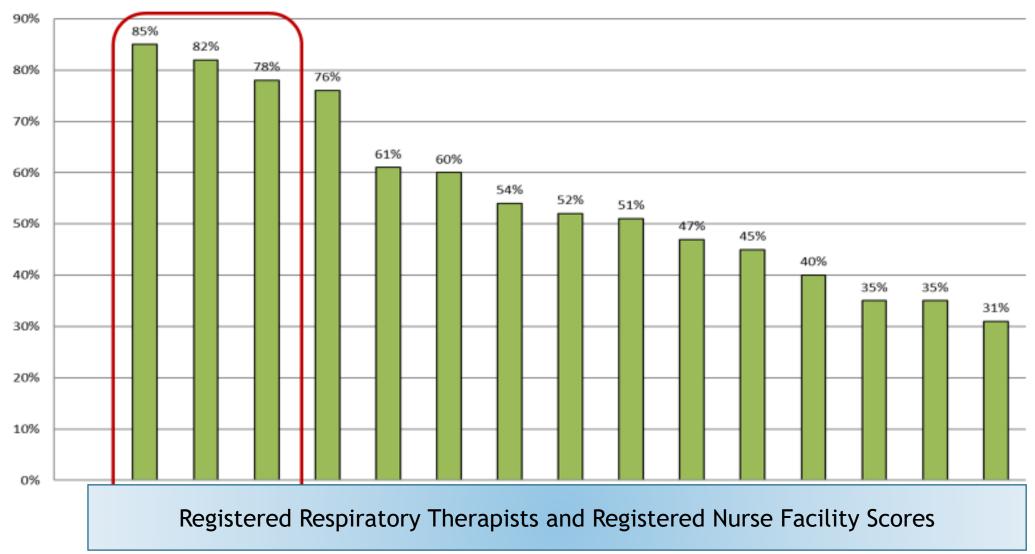
Intermountain[®] Healthcare

Implemented training based on case study data

- RRTs tested monthly on 102 skills
- Process for timely communication to RRTs
- Process to document all equipment present before delivery
- All RNs participate in 2 NRP simulations monthly (scheduled, unscheduled)
- All RNs perform 20 key NRP components with results scored
- Strict guidelines for timely notification of both pediatrician and neo
- Monthly review "everything"
- Feedback to the staff


nountain®

Equipment errors were solved one year post implementation


~%

Documentation of Equipment Ready

Knowledge Baseline Scores

TeleHealth Incorporated into training and practice

Resuscitation Communication with Neonatologists and Pediatricians

Please give information in the following order:

We are Resuscitating a

ermountain®

- _____week (gestation) baby
- _____minutes old (age)
- _____delivery -Vaginal, C-section(reason), abruption, meconium, prolapsed cord, forceps, vacuum
- o ______ other risk factors-PIH, Chorio, Diabetes (GDM,IDDM), Drug use, or recent medications given

A&I

- o PPV started (how long ago)
- Heart Rate is _____ (if less than 60 report chest compressions; if started) or if >100 (how long)
- o Is PPV effective report PIP/Peep , Rate, FIO₂, Breath sounds
- Oxygen Saturations if reading
- _____Muscle Tone (normal, hypotonic)

Repeat Assessment and Interventions (A&I) every minute during resuscitation.

Neonatal Resuscitation with Tele Health

Initiate Tele Health phone call prior to delivery if possible

- Prematurity < 34 6/7 weeks
- Category III FHR tracing (EITHER sinusoidal pattern OR absent variability with recurrent la decelerations, recurrent variable deceleration, or bradycardia)
- Severe polyhydramnios (AFI > 35)
- Severe oligohydramnios (AFI_5 or less)
- Prolapsed cord
- Any prenatally detected condition with reasonable potential for requiring neonatal resuscitation or urgent neonatal transport (Fetal tachycardia with or without maternal te fetal sepsis, fetal seizures, no fetal movement, etc)
- Fetal hydrops
- Maternal eclampsia if fetal distress
- Massive vaginal bleeding (Abrutio placentae)
- Suspected uterine abruption
- Placenta accreta/percreta/increta (diagnosed prior to delivery)
- Maternal Code Blue
- Neonatologist requested by delivering physician/CNM
- RN or RT feels a need to have Neonatologist on Tele Health phone call

• Pren • Cate

Healing for life"

The Effect of a Newborn Telehealth Program on Transfers Avoided

A Multiple-Baseline Study

Jordan Albritton, PhD, MPH Lory Maddox, MSN, MBA, RN Joe Dalto, PhD, MS Erick Ridout, MD Stephen Minton, MD

Background

TeleHealth Program for Newborn Critical Care (NCC)

• <u>Purpose</u>: Provide synchronous video assistance for resuscitations (VAR) and other newborn care at level 1 and 2 nurseries.

• <u>Why?</u>

- $\,\circ\,$ 15% of births at Intermountain occur in suburban and rural facilities
- $_{\odot}$ 10% of newborns require assistance breathing and 1% require extensive resuscitation $^{(1)}$
- \circ Skills associated with low frequency events deteriorate rapidly ⁽²⁻⁴⁾

Background

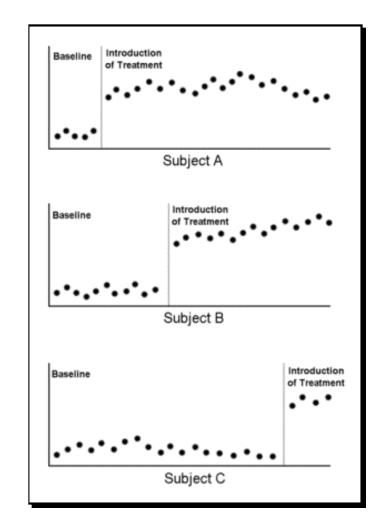
Key Research Question

- Does the TeleHealth NCC program reduce unnecessary transfers?
 - $\,\circ\,$ Transfers are costly and potentially risky
 - $\,\circ\,$ Transfers remove families from their local community and support
 - \circ Preventing transfers supports the viability of local facilities

Existing Evidence

- Limited research on use of telehealth for <u>neonatal care</u>
 Improved quality of resuscitation ⁽⁵⁻⁶⁾
- Decreased LOS and fewer transfers for other pediatric services (7-10)

Research Methods


Multiple-Baseline Study Design

- Takes advantage of staggered implementation
- Controls for singular external events that could bias results
 - $\,\circ\,$ Internal or External Policies
 - Development of new pharmaceuticals
 - Celebrity events

termountain[®]

Poisson Regression

- Useful for outcome variables that are counts
 - $\circ \rightarrow$ Count of transfers per facility by month
 - $\circ \rightarrow$ Estimate difference in predicted number of events

Data

Inclusion Criteria

- All births at 8 Intermountain Hospitals that implemented telehealth for NCC between Nov 2014 and Dec 2015.
 - O Births from Jan 1, 2013 to Dec 31, 2017

Exclusion Criteria

- Birthweight < 500 grams
- Gestational age < 23 weeks
- Patients that did not survive beyond the initial encounter
- Patients without 1-minute Apgar Scores
- Births during 6-month periimplementation period

Data

Analytic Sample

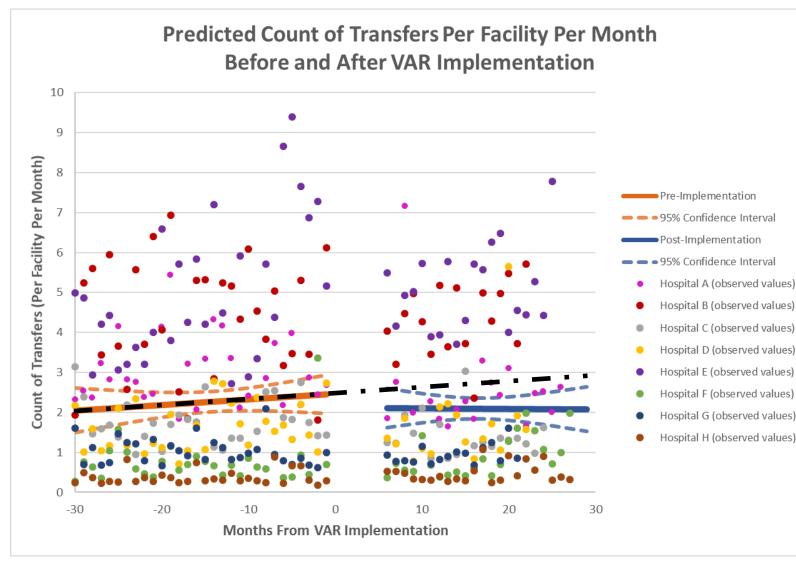
• 44,643 births

Main analysis:

Aggregated to facility-month level

 214 observations pre-implementation
 180 observations post-implementation

Key variables

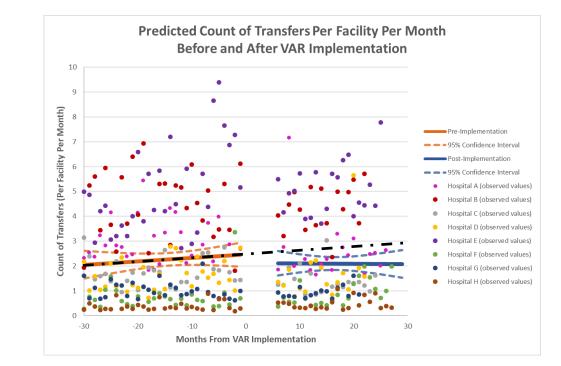

- Main outcome
 - # of transfers per facility-month
- Main dependent variable
 - \circ Dichotomous variable: before/after intervention
- Control variables
- Calendar and Year
 Patient Volume (births)
 Facility
- Clinical factors

Results

Facility level analysis:

- Transfers per facility per month reduced by 0.70 (p<0.009)
- → 67.2 fewer transfers per year across the 8 facilities
- → Predicted savings of \$1,220,352 per year

Intermountain[®] Healthcare


Results

Individual Level analysis

• Logistic regression (probability of being transferred)

 \odot Controlling for maternal/fetal conditions

- Intervention associated with:
 - 29.6% lower odds of being transferred (p=0.008)
 - → 0.49 %-point reduction in probability of being transferred

Conclusions and Implications

Conclusion

• The TeleHealth NCC program appears to reduce the number of transfers per facility per month

Implications

- Numerous benefits to patients and community
- Findings were based on only 8 facilities and TeleHealth utilization rate less than 1%

 Target TeleHealth utilization rate of 3-5% would provide even greater benefit

References

- 1. Raghuveer TS, Cox AJ. Neonatal resuscitation: an update. Am Fam Physician. 2011;83(8).
- 2. Bender J, Kennally K, Shields R, Overly F. Does simulation booster impact retention of resuscitation procedural skills and teamwork? J Perinatol. 2014;34(9):664-8.
- 3. Mosley CM, Shaw BN. A longitudinal cohort study to investigate the retention of knowledge and skills following attendance on the Newborn Life support course. Arch Dis Child. 2013;98(8):582-6.
- 4. Jukkala AM, Henly SJ. Provider readiness for neonatal resuscitation in rural hospitals. J Obstet Gynecol Neonatal Nurs. 2009;38(4):443-52.
- 5. Colby CE, Fang JL, Carey WA. Remote video neonatal consultation: a system to improve neonatal quality, safety and efficiency. Resuscitation. 2014;85(2):e29-30.
- 6. Fang JL, Campbell MS, Weaver AL, Mara KC, Schuning VS, Carey WA, et al. The impact of telemedicine on the quality of newborn resuscitation: A retrospective study. Resuscitation. 2018;125:48-55.
- 7. Rendina MC, Downs SM, Carasco N, Loonsk J, Bose CL. Effect of telemedicine on health outcomes in 87 infants requiring neonatal intensive care. Telemed J. 1998;4(4):345-51.
- 8. Quinn GE, Ying GS, Daniel E, Hildebrand PL, Ells A, Baumritter A, et al. Validity of a telemedicine system for the evaluation of acute-phase retinopathy of prematurity. JAMA Ophthalmol. 2014;132(10):1178-84.
- 9. Joshi C. Telemedicine in pediatric neurology. Pediatr Neurol. 2014;51(2):189-91.
- 10. Webb CL, Waugh CL, Grigsby J, Busenbark D, Berdusis K, Sahn DJ, et al. Impact of telemedicine on hospital transport, length of stay, and medical outcomes in infants with suspected heart disease: a multicenter study. J AM Soc Echocardiog. 2013;26(9):1090-8.

Stephen Minton, MD

Panel Participants

Taunya Cook, RN

Stephanie Merrell, RN

Jordan Albritton, PhD

Lory Maddox, RN

Helping People Live the Healthiest Lives Possible®

